
Lecture 19: Simple Applications of Fourier Analysis
& Convolution
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Recall I

Let f : {0, 1}n → R be a function

Let N = 2n

Inner product of two functions is defined as follows

〈f , g〉 := 1
N

∑
x∈{0,1}n

f (x)g(x)

For S ∈ {0, 1}n, define the function χS(x) = (−1)S·x

{χS}S∈{0,1}n forms an orthonormal basis

We can write any function as follows

f =
∑

S∈{0,1}n
f̂ (S)χS ,

where f̂ (S) = 〈f , χS〉
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Recall II

Parseval’s Identity:

1
N

∑
x∈{0,1}n

f (x)2 = 〈f , f 〉 =
∑

S∈{0,1}n
f̂ (S)2

The mapping f 7→ f̂ is a linear bijection

And,
(̂
f̂
)
= 1

N f
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Properties

For a constant α, we have α̂f = αf̂

For two functions f and g , we have ̂(f + g) = f̂ + ĝ

For a c ∈ {0, 1}n, suppose we have f (x) = g(x + c)

f̂ (S) =
1
N

∑
x∈{0,1}n

f (x)χS(x)

=
1
N

∑
x∈{0,1}n

g(x + c)χS(x)

=
1
N

∑
x∈{0,1}n

g(x + c)χS(x + c)χS(c)

= χc(S)ĝ(S)

So, we have f̂ = χc ĝ
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Binary Output Functions

We will interpret binary functions as f : {0, 1}n → {+1,−1}
A Note: Traditionally, a binary function g is
g : {0, 1}n → {0, 1}. We consider an equivalent function
f : {0, 1}n → {+1,−1} defined by f (x) = (−1)g(x), or
f (x) = 1− 2g(x). Intuitively, the traditional binary output is
mapped as follows: 0 7→ +1 and 1 7→ −1

Claim
Let f : {0, 1}n → {+1,−1} be a binary function. We have∑

S∈{0,1}n
f̂ (S)2 = 1

Follows from Parseval’s Identity
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Distributions as Functions

Let F be a distribution over the sample space {0, 1}n

Let f : {0, 1}n → R be the corresponding function defined by

f (x) = P [F = x ]

When we say that f is a distribution, we mean that there
exists an associated F as mentioned above such that F is a
probability distribution
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Properties of Interesting Distributions I

Claim

Let f : {0, 1}n → R be a distribution. Then, we have f̂ (∅) = 1
N .

Proof.

f̂ (∅) = 1
N

∑
x∈{0,1}n

f (x)χ∅(x)

=
1
N

∑
x∈{0,1}n

f (x) · 1 =
1
N
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Properties of Interesting Distributions II

Claim
Let f = U{0,1}n , i.e. it is the uniform distribution over {0, 1}n.
Then, we have f̂ = δ0n/N.

Proof.

f̂ (S) =
1
N

∑
x∈{0,1}n

f (x)χS(x)

=
1
N2

∑
x∈{0,1}n

χS(x)

=

{
1
N , if S = ∅
0, if S 6= ∅
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Properties of Interesting Distributions III

Claim
Let f = δ0n , it is the probability distribution that always outputs 0n.
Then, we have f̂ = U{0,1}n .

Use the previous result and the fact that (̂f̂ ) = f /N
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Properties of Interesting Distributions IV

This result generalizes both the previous results.

Claim
Let V ⊆ {0, 1}n be a vector space. Let f = UV be the uniform
distribution over the vector space V . Then, we have f̂ = 1V⊥/N.

Proof.

Part 1: Let S ∈ V⊥.

f̂ (S) =
1
N

∑
x∈{0,1}n

f (x)χS(x) =
1
N

∑
x∈V

1
|V |

(−1)S ·x

=
1
N

∑
x∈V

1
|V |
· 1 =

1
N
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Properties of Interesting Distributions V

Proof.
Part 2: By Parseval’s Identity, we have∑
S 6∈V⊥

f̂ (S)2 =
1
N

∑
x∈{0,1}n

f (x)2 −
∑

S∈V⊥

f̂ (S)2

=
1
N

∑
x∈V

f (x)2 −
∑

S∈V⊥

f̂ (S)2

=
1
N
|V |
(

1
|V |

)2

−
∣∣∣V⊥∣∣∣ ( 1

N

)2

=
1
|V |
− N

|V |
· 1
N2 = 0

This implies that f̂ (S) = 0 for all S 6∈ V⊥.
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Properties of Interesting Distributions VI

Exercise: Compute ̂(c + f ), where c ∈ R is a constant and
f : {0, 1}n → R
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Properties of Interesting Distributions VII

A distribution X has min-entropy at least k , represented by
H∞(X ) > k , if P [X = x ] 6 2−k

Claim
Let f be a probability distribution with min-entropy at least k .
Then, we have: ∑

S∈{0,1}n
f̂ (S)2 6

1
NK

,

where K = 2k .
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Properties of Interesting Distributions VIII

Proof.
By Parseval’s Identity we have∑

S∈{0,1}n
f̂ (S)2 =

1
N

∑
x∈{0,1}n

f (x)2

6
1
N

∑
x∈{0,1}n

f (x) · 1
K

=
1

NK

∑
x∈{0,1}n

f (x) =
1

NK
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Properties of Interesting Distributions IX

Claim
Let f and g be two distributions over {0, 1}n. Then, we have

2SD (f , g) 6 N

 ∑
∅6=S∈{0,1}n

(
f̂ (S)− ĝ(S)

)2


1/2
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Properties of Interesting Distributions X

2SD (f , g) =
∑

x∈{0,1}n

∣∣f (x)− g(x)
∣∣

6

 ∑
x∈{0,1}n

(
f (x)− g(x)

)2
1/2

N1/2 By Cauchy-Schwarz

= N

 1
N

∑
x∈{0,1}n

(
f (x)− g(x)

)2
1/2

= N

 1
N

∑
x∈{0,1}n

(f − g)(x)2


1/2

Fourier Analysis



Properties of Interesting Distributions XI

2SD (f , g) 6 N

 1
N

∑
x∈{0,1}n

(f − g)(x)2


1/2

= N

 ∑
S∈{0,1}n

̂(f − g)(S)2


1/2

By Parseval’s

= N

 ∑
S∈{0,1}n

(
f̂ (S)− ĝ(S)

)2


1/2

By Parseval’s

= N

 ∑
∅6=S∈{0,1}n

(
f̂ (S)− ĝ(S)

)2


1/2

∵ f̂ (∅) = ĝ(∅) = 1/N
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Properties of Interesting Distributions XII

Corollary

Let f be a distributions over {0, 1}n. Then, we have

2SD
(
f ,U{0,1}n

)
6 N

 ∑
∅6=S∈{0,1}n

f̂ (S)2


1/2

Use the previous result and the fact that Û{0,1}n = δ0n/N
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Convolution I

Let F and G be two probability distributions over {0, 1}n

Let H be a new distribution defined by the following sampling
procedure:

Sample a ∼ F
Sample b ∼ G
Output a+ b

We will represent this as H = F⊕G
Note that we have

P [H = x ] =
∑

y∈{0,1}n
P [F = y ] · P [G = x − y ]

Let f , g , and h be the functions corresponding to the
distributions F, G, and H, respectively. That is,

h(x) =
∑

y∈{0,1}n
f (y)g(x − y)
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Convolution II

Definition (Convolution)

Let f , g : {0, 1}n → R. The convolution of f and g , represented by
(f ∗ g), is the function h such that

h(x) =
∑

y∈{0,1}n
f (y)g(x − y)

We emphasize that this definition is not specific to probability
distributions f and g , but for all functions. When f and g happen
to be probability distributions, then the function h corresponds to
the probability distribution corresponding to the sampling procedure
mentioned above
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Convolution III

Claim

(̂f ∗ g) = N · f̂ ĝ
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Convolution IV

(̂f ∗ g)(S) = 1
N

∑
x∈{0,1}n

h(x)χS(x)

=
1
N

∑
x∈{0,1}n

∑
y∈{0,1}n

f (y)g(x − y)χS(x)

=
1
N

∑
x∈{0,1}n

∑
y∈{0,1}n

f (y)g(x − y)χS(y)χS(x − y)

=
1
N

∑
y∈{0,1}n

∑
x−y∈{0,1}n

f (y)g(x − y)χS(y)χS(x − y)

= N

 1
N

∑
y∈{0,1}n

f (y)χS(y)


 1
N

∑
z∈{0,1}n

g(z)χS(z)


= Nf̂ (S)ĝ(S)
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Preliminary Application of Convolution

An alternate proof for computing the Fourier Transform of a
function that is the uniform distribution over a vector subspace V .

Let V and W be two vector subspaces of {0, 1}n

Let Z = sp(V ,W )

Prove that: UZ = UV ⊕ UW

Prove that: Z⊥ = V⊥ ∩W⊥

Use induction on the dimension of V to prove that

ÛV = 1V⊥/N
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